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Abstract

The Physics of Colloids in Space (PCS)

experiment was accommodated within International

Space Station (ISS) EXpedite the PRocessing of

Experiments to Space Station (EXPRESS) Rack 2 and

was remotely operated from early June 2001 until

February 2002 from NASA Glenn Research Center's

Telescience Support Center (TSC) in Cleveland, Ohio,

and from the remote site at Harvard University in

Cambridge, Massachusetts. PCS was launched on

4/19/2001 on Space Shuttle STS-100. The experiment

was activated on 5/31/2001. The entire experimental

setup performed remarkably well, and accomplished

2400 hours of science operations on-orbit.

The sophisticated instrumentation in PCS is

capable of dynamic and static light scattering from 11 to
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169degrees,Braggscatteringovertherangefrom10to
60degrees,dynamicandstaticlightscatteringatlow
anglesfrom0.3to6.0degrees,andcolorimaging.

Thelongdurationmicrogravityenvironment
ontheISSfacilitatedextendedstudiesonthegrowth
andcoarseningcharacteristicsofbinarycrystals.The
de-mixingof thecolloid-polymercritical-pointsample
wasalsostudiedasit phase-separatedintotwophases.
Further,agingstudiesona col-polgel,gelationrate
studiesinextremelylowconcentrationfractalgelsover
severaldays,andstudiesonaglasssample,allprovided
valuableinformation.Severalexcitingandunique
aspectsoftheseresultsarediscussedhere.

Introduction

Colloids can be defined as fluids with other

particles dispersed in them, particularly particles of size

between one nanometer and one micrometer. At the

lower bound, the particle sizes are on the order of

molecular dimensions, and at the upper bound external

forces such as gravity are more important than

Brownian motion. The variations in sizes, shapes

(spheres, rods, etc.), the volume fractions of the

particles involved, the surface charge types and

distributions, and the properties of the fluid medium,

lead to diverse colloidal systems with several technical

applications. It is fascinating to see the resulting

widespread colloids phenomenon in nature and in

industrial processes. Aerosols, foam, paints, pigments,

cosmetics, milk, salad dressings, and several electro-

and magneto-rheological fluids are examples of

colloidal dispersions or suspensions. Abundant

biomedical applications for colloidal crystals are being

developed; some examples are drug delivery,

biomimetic assemblies, cell encapsulation, tissue

culture, and controlled release of drugs, flavors,

nutrients, and fragrances. Optical, and information and

computer technologies can benefit from _colloid

engineering" of novel materials such as photonic

crystals, via self-assembly in microgravity.

Starting with well-characterized particles, we

can fine-tune the interactions among them to vary from

highly repulsive, to weakly attractive, to strongly

attractive interactions. Understanding the various
mechanisms involved in these interactions is an

important science objective in the very wide field of

colloids research. In addition, the colloidal particles

can serve as model systems for the study of fluid and

solid properties since they can be considered to be

analogous to atoms; hence, they are of interest in the

study of the nature of and transitions among gaseous,

liquid, solid/crystal, and amorphous states of matter.

In this PCS experiment, four classes of

colloidal samples, namely, binary colloidal crystals, col-

pol mixtures, fractal gels, and a glass sample were

investigated. Quantitative data on nucleation and

growth in the absence of gravity were obtained.

Hardware and Diagnostics

The PCS experiment hardware is comprised of

an Avionics Section unit and a Test section unit. They

are accommodated side by side in ISS EXPRESS Rack

2, occupying four Middeck Locker Equivalents of rack

volume (Figure 1). The PCS hardware uses the

EXPRESS Rack utilities of power, air-cooling, water-

cooling, and communication for commanding and data

telemetry. The PCS Avionics Section provides power

Figure 1 PCS on ISS

NASA/TM--2002-212011 2



distribution,commandanddatacommunication,data
acquisitionandprocessing,anddatastorageon18GB
removableharddrives.

ThePCSTestSectioncontainseightcolloid
samplesandall thediagnosticinstrumentation.A
schematicof thePCSsciencediagnosticsis shown
(Figure2).Thesediagnosticsaremostlylightscattering
instrumentation,whichweredevelopedsubstantially
underapreviousflightexperiment,thePhysicsofHard
SpheresExperiment(PHASE).1'2DynamicandStatic
LightScattering(akafiberscattering)isprovidedviaa
532nanometerNd-YAGlaserandfiber-coupledsingle
photoncountingdetectors.Two detectionfibers
simultaneouslycollectlightatscatteringanglesfrom11
to 169degreesandthecomplementaryangle.Bragg
scatteringismeasuredovertherangefrom10to 60
degreesbyimagingthescatteringfromasecondNd-
YAGlaseronanopticalscreenwithadigitalcamera.
Additionalopticsanda seconddigitalcameracapture
thelaserlightscatteredat lowanglesof 0.3to 6.0
degrees.Via the electronicsanddataprocessing
providedby theAvionicsSection,bothstaticand
dynamiclightscatteringdataareobtainedfromthelow
scatteringangleopticsand camera.Staticlight
scatteringrefersto themeasurementof theaverage
angulardistributionof the scatteredlight. This
distributionisameasureoftheFouriertransformofthe
mass-to-masscorrelationsin thesample,meaningthat
thistypeof measurementprovidesinformationabout

thesizesor positionsof thecolloidsor structures
formedandhowtheyarearrangedonlengthscalesup
toapproximately5microns.Dynamiclightscatteringis
a techniquethatmeasuresthespectralwidthor time
dependenceof thescatteredlight,resultingfromthe
motionsofparticlesor structures.Twocolorcameras
(lx and10xmagnification)providereal-spaceimages
on macroscopiclengthscales(to complementthe
Fourier-spacelightscatteringonmicroscopiclength
scales).A furtherdetaileddescriptionof thePCS
hardwarehasbeengivenbyAnsarietal.,3;thedetailed
descriptionofthePCSexperimentobjectiveshasbeen
discussedbyDohertyetal.,4andadetaileddescription
oftheflighthardwareoperationsonISSisdiscussedby
Doherty,etal.5

Thus,theapparatusis equippedto perform
sevendifferentmeasurements6 - Static Light Scattering

(SLS), Dynamic Light Scattering (DLS), High Angle

Scattering or Bragg Scattering (HAS), Low Angle Static

Scattering (LAS), Low Angle Dynamic Scattering

(LAD), Rheology, and Imaging.

Sample Fluids

Table 1 shows the details of the samples used

in PCS. A total of eight colloid samples, each

approximately 3 milliliter in volume, were used. Each

sample was contained in a glass cell that was stationed

within a remotely controlled carousel inside the PCS

Test Section.

Figure 2 Schematic of the PCS Diagnostics
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Cell #, Sample Name,

sample image
1, Col-Pol Critical Point

sample: 1 lhrs:45mins

2, Silica Fractal

ll
Soon after constituent
combination.

Polystyrene Fractal gel:

high-mag image 10 days
after constituent
combination.

Sample Details

r= 170 nanometer Colloid

and Polystyrene Polymer

Cell #, Sample

Name, sample image
5, Col-Pol Crystal 1
hr and 32 minutes

Sample Details

(Mw=13.2e6); Volume after mixing
fraction is Colloid: 0.22

Polymer concentration is Cp
=1.285 mg/cm3
Solvent is cis-decalin and
tetralin - index match

particles; Sample displays

strong low angle scattering

Silica Ludox TM50 Dupont 6, Col-Pol Gel ASM8 (r=324.7 nanometer)

in water, D=22 nanometers, _ Colloid and Polystyrene

volume fraction = 1.5e-4, _ Polymer (Mw =1.98e6,

Salt is NaC1 (4M) Radius = 38 nanometer,
Size ratio is 0.12 (polymer

to colloid); Volume fraction
is Colloid: 0.25; Polymer

Col-Pol Gel, 1 day concentration is Cp =5.0
23 hrs and 40 mg/cm3. Solvent is cis-
minutes after mix decalin and tetralin - index

r=270 nanometer PMMA

Colloid and Polystyrene

Polymer; (Mw =3.9e6);
Volume fraction Colloid:
0.325

Polymer concentration is Cp

=1.055 mg/cm3
Solvent is cis-decalin and

tetralin - index match

particles

match particles. Sample

displays a near static
scattering ring at low

angles.

Polystyrene (IDC white 7, AB13 Binary Vol. Fraction of A

sulfate 21 nanometer Cr_al ._..._..._._... (r=415nm) is 0.115, and

diameter) in water (63% _ Vol. Fraction of B

D20, balance H20). (r=237.6nm) is 0.41.
Volume fraction 8.2e-6; Salt Radius ratio is 0.5725.

Solution: MgC12 (0.1 M) in Solvent is cis-decalin and

Water (63% D20, balance tetralin - index match

H20) AB13: High-mag particles. Crystallization
image, time 5 days

Vol. Fraction of A 8, Colloidal Glass i 0.508 micron poly-methyl

(r=324.7nm) is 0.4167, and _ methacrylate (PMMA)

Vol. Fraction of B _ colloid

(r=130nm) is 0.1254. Total volume fraction is •
Radius ratio is 0.4004. 0.612

Solvent is cis-decalin and Solvent is cis-decalin and
tetralin -index match tetralin - index match

particles Crystallization Colloidal Glass particles
Color image of the AB 6 time 2 days. sample, 2 hrs 33 min Crystallization time: a few

test cell. after mix. days

Table 1. PCS Flight Samples Details, and some sample pictures.
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Four classes of colloidal materials were

studied. These include 1) ordered binary crystalline

samples; binary colloidal crystal alloy samples are

dispersions of two different size particles in an index-

matching fluid; 2) mixtures of colloidal particles with

other species, primarily polymers, which induce a weak

attractive interaction allowing us to precisely tune the

phase behavior of the mixtures; Colloid-polymer

mixture samples are solutions of mono-disperse

particles mixed with a mono-disperse polymer in an

index-matching fluid, where the phase behavior--solid,

liquid, and gas--is controlled by the concentration of

the colloid, the concentration of the polymer, and the

relative size of the colloid and the polymer; 3) highly

disordered, but very tenuous fractal structures which

possess their own unique symmetries and their own

unique properties. Fractal gels may form when charged

colloids have their electrostatic repulsions screened out

by the addition of a salt solution, allowing aggregation.

These can be formed at very low volume fractions, and

the highly tenuous aggregates formed exhibit a

remarkable scaling property: their structure appears the

same on all length scales up to a cluster size, and so can

be described as a fractal. A polystyrene, and a silica

fractal sample were studied; and 4) colloidal glass

samples; consider a hard sphere colloid system: as the

particles are packed together, if one of them wants to

move, its neighbors have to cooperate. As they are

packed even tighter, more of the particles have to

cooperate for any to move. When all of the particles in

the sample have to cooperate, the sample is essentially a

solid--this explains what happens with glass, as it is

cooled. 7 In the earlier PHASE flight, it was found that

samples which were glasses in lg crystallized

immediately in gg; this sample is to help examine the

existence of colloidal glasses in gg.

Thus, there are eight test cells: two binary

alloy crystals (one AB6, one AB13), three Col-Pol

systems (one near critical point in two-phase region,

one gel-like sample and one crystal sample), two fractal

gel systems (one polystyrene, and one silica), and one

colloidal glass system.

Initiation of an investigation on each colloid

sample occurs when it is homogenized (that is, stirred

up via the oscillation of the sample cell within its

bearings or mixed with a special fluid combination

device) to evenly distribute its suspended particles and

then allowed to sit for days, weeks, or months on orbit.

During this interval, particles in the samples will

organize themselves--that is, self-assemble--into

crystal-like or gel-like arrangements. Meanwhile, the

laser light scattering and visual imaging diagnostics are

utilized to gather structural information about the

samples during this crystallization or gelation process.

All samples, except the two fractal gels, can be

rehomogenized (reinitiated) to repeat a measurement at

another sampling rate or to utilize a different

measurement technique to examine their behavior in a

complementary way. The fractal gels can only be run

once. For all samples, measurements were taken every

few seconds immediately after homogenization and then

with less frequency (typically for a few hours each

week) over a several-month period, with on-going

experimentation taking place for over several months.

The measurements readily provided the information on

the growth, the size, and the type of structures formed.

Results

Quantitative data from the dynamic and static

light scattering, Bragg scattering, low angle dynamic

and static light scattering, and color imaging were

obtained; detailed data analysis in each of the research

areas (binary colloidal alloys, colloid-polymers, fractal

gels, and colloidal glass) is still underway. The latest

research updates can be found in the PI website 6 related

to this PCS project. The following descriptions
illustrate the kind of data obtained from the various

samples. Table 1 also shows some color images of these

various samples.

Binary Colloidal Crystal Alloy

It is known that under appropriate conditions,

monodisperse colloidal particles can self-assemble into

crystalline structures with long range periodic order, 8

driven solely by entropy. If particles of different

diameters are mixed together, the same entropic effects

can lead to the self-assembly of binary alloy crystals. 9'1°

Under certain conditions, it has been found

that "hard-sphere" particles (colloidal PMMA) at size

ratio 0.58 formed both the AB 2 and the AB13

superlattice structures. Several different crystalline

structures have been observed, and more are predicted
to occur 11.

In PCS, we studied two samples, one an AB13

structure, the second an AB6 structure. In both cases, by

monitoring the evolution of the crystallization of each

sample, we learned new information that is not

accessible in studies performed in lg.

In the case of the AB13 sample, we observed

unexpected power-law behavior in the growth of the

crystals. The origin of these power-law growths is still

been investigated as we perform more detailed analysis

of the data. The AB6 sample exhibits quite different

growth behavior, and its origin is also still being

NASA/TM--2002-212011 5



investigated.TheAB13 sample was allowed to anneal

for an extended period, and we obtained remarkable

static scattering, showing more peaks in the powder

pattern than have ever been observed before. This

suggests that gravity plays an important role in the

ultimate size and morphology of the crystals.

Colloid-Polymer Mixtures

The addition of the polymer induces weak

attractive interactions between the colloidal particles by

the depletion mechanism, leading to a rich phase

behavior for the colloidal particles. Several such

systems, including emulsion droplets, I: charge-

stabilized polystyrene spheres, 13 and polymethylmeth-

acrylate (PMMA) particles 14 have been studied. As flae

strength of the attractive interaction is increased by

increasing the polymer concentration, the fluid-solid

coexistence extends over an increasing range of colloid
concentrations.

Colloid-Polymer Crystal:

Initial analysis of the data shows that the

colloids phase separate into glassy or disordered

regions, followed by crystallization of the glassy

regions. We expect to be able to extract useful data

about the growth mechanism of the crystals, and to be

able to contrast this with the behavior of purely

repulsive systems.

Colloid-Polymer Gel:

This sample behaved in an unexpected way; it

formed a solid gel, even though we had planned to have

a sample that would be in the state that we call the fluid-

cluster phase. However, there are also very interesting

features of gelled samples that we were able to study

with this sample. We studied the solid-like behavior of

the gel, and we were able to use the rheology capability

of the PCS apparatus to estimate the elastic modulus of

the sample. This will be compared to similar samples

prepared on the ground, where we can measure the

elastic modulus directly. In addition, this gel was found

to age, and become slower dynamically, within a short

period of time after gelation similar to the aging

behavior observed in fractal gels on earth.

Colloid-Polymer Critical Point:

This sample produced a beautiful exhibit of

spinodal decomposition over four decades in length

scale, from 1 micron to 1 cm. We were able to follow

the growth of the length scale with time over the full

range of length scales, and the results will be compared

to theoretical predictions.

FractalGels

The irreversible aggregation of colloidal

particles leads to the formation of highly tenuous, but

mechanically rigid structures with scale invariant or

fractal symmetry. 15 The physical properties of such

objects should directly reflect this scale invariance and

these experiments will probe these properties. They

will focus on the mechanical properties, and thus will

measure the dynamics of the fractal objects. If the

aggregation is allowed to proceed, unimpeded by the

effects of sedimentation, the fractal aggregates will

ultimately form a continuous network, or a colloidal

gel. 16 This gel will have unique properties, reflecting the

fractal scaling of the individual aggregates at shorter

length scales, and the mechanical properties of a

collection of fractal aggregates at larger length scales.

The colloidal polystyrene, and silica gel samples are to

study these aggregation characteristics, and test whether

or not the aging behavior is unique to polystyrene gels.

The polystyrene fractal sample, which had a

very low volume fraction, never gelled in the time it

was observed. However, it did produce very interesting

results, allowing us to measure the internal vibrational

modes of the fractal structure, even flaough it did not

fully gel. This was because the fractal clusters grew so

large, which would not be feasible in ground-based

experiments. These results show that the theoretical

models that describe a gel also work for fractal

aggregates, provided they are sufficiently large, and

provided the range of scattering angles required can be

accessed. In addition, the inhomogeneities visible in the

polystyrene sample, quite early in its growth were very

puzzling; further ground based experiments based on

these results, uncovered the existence of certain limits

to the lowest volume fraction at which such gels can be

formed in microgravity and in lg; these ground

experiments are in progress toward corroborating the

flight experimental results.

The silica sample probably did gel, as

expected. This sample was at a higher volume fraction,

and so gelled in a shorter time than the polystyrene.

This is first time a silica gel has been formed under

these low volume fractions, because it is impossible to

do this on earth where gravity would crush the gel.

Colloidal Glass:

In an earlier PHASE flight, it was found that

samples which were glasses in lg crystallized

immediately in btg; this sample is to help examine the

existence of colloidal glasses in btg. The sample that

was flown was a mixture of two glassy samples that had

been flown in previous PHASE flights. This PCS sample

NASA/TM--2002-212011 6



wasobservedto crystallizerapidlyinspace;however,
preliminaryobservationssuggestthatit willcrystallize
atlgaswell.Theoriginofthisbehaviorisnotclear;it
ispossiblethatthesamplewaspoorlymixed,andthis
leftsomeregionswherecrystalsnucleatedmoreeasily,
resultinginthecrystallization.Thecolloidalglassflight
sampleresults,andthetestswiththecolloidalglass
samplein lg (in theengineeringunit at Harvard,)
indicatethatthemixingproceduresmustbecarefully
examinedfor theglasssamples.Furtherexperiments
wereneededon earthaftertheflight samplewas
returned.Thesetestsarein progress.Thesearevery
criticalforupcomingPCS+experiments.

Need for microgravity, and long duration microgravity:

The formation of colloidal crystals is strongly

affected by sedimentation; this is most graphically

demonstrated by the results of the experiments of

Chaikin and Russel, who showed that the morphology

of colloidal crystals grown in space is completely

different from that grown on earth. 17

As the crystals sediment, the shear of the fluid

flowing past their edges is sufficient to destroy them. In

addition, the sedimentation time of the crystals rapidly

begins to compete with the diffusion time of the

accreting particles, significantly changing the growth

mechanism. While some of this effect can be mitigated

by buoyancy matching, this is not completely effective,

even at the best level of buoyancy match that can be

achieved. By calculating the effective Peclet number,

(the ratio of the diffusion time scale of the particles, to

the settling time scale of the crystal,) it can be shown

that the size of the crystals, Rc, .... that can be formed

varies inversely as the square root of both g, the gravity,

and Ap, the residual density difference after density-

matching. That is, if we improve the buoyancy match by

two orders of magnitude, the size of the crystals will

increase by one order of magnitude; by comparison

using the standard non-buoyancy matched fluids, but

doing the experiment in microgravity gains an

additional 3 decades; this is consistent with what is seen

in the CDOT and PHASE " 17experiments. Combining the

buoyancy match and microgravity will produce crystals

of remarkable sizes.

These steady streams of PCS data from every

sample from the microgravity environment are of great

scientific value; incidentally, a visually interesting

example is the time-lapse movie of the de-mixing of the

colloid-polymer critical point sample. The spinodal

decomposition in this sample, in the absence of gravity,

over four decades of length scale, (from 1 micron to 1

centimeter,) is being analyzed in detail. Such behaviors

cannot be observed in these samples on earth because

sedimentation would cause the colloids to fall to the

bottom of the cell faster than the de-mixing process

could occur. That is, phenomena such as this col-pol

spinodal decomposition, and crystallization of samples

that remain as glass in lg, can be studied only in

'microgravity'.

In addition, the 'long durations' over which

this microgravity environment is available in the ISS,

allows us to zero in on the initial, and final, growth and

coarsening behaviors of all the samples; and, e.g., in the

case of fractals, the long duration microgravity enabled

us to study them at extremely low concentration limits,

at which the physical processes of interest are extremely

slowed down.

Thus, both, the microgravity and the long
duration over which it is available facilitated these

studies on the growth and coarsening characteristics of

binary crystals, col-pol crystals, gels, fractals, colloidal

glasses.

In this context, it is worth pointing out the

capabilities of another facility, the LMM (Light

Microscopy Module), that is being developed and built

by NASA GRC; the LMM will provide the following

exciting capabilities: It is a reusable experiment

platform that provides confocal- and video-microscopy,

laser tweezers, and spectrophotometry, as well as the

possibility to study hundreds of samples. For example,

we can study 120 or more sample cells, each around

2.5mm dia. and 150 microns thick (-0.75 microliter

volume). We can study the structure and dynamics of

various systems in real space, allowing us to probe local

structure in unprecedented detail. The details and the

capabilities of the LMM,18 21 and upcoming

experiments such as PCS-222 experiments are described

in the references.

PCS Hardware failure and recovery:

On Sunday, February 24, 2002, at the onset of

a scheduled operational run, the PCS flight system

computer failed to boot up. After various intense

recovery attempts, including one on Wednesday, March

20, 2002, in which an ISS crew member, Carl Walz,

executed a set of uniquely planned, designed, and

verified procedures in which he electrically jumper-

connected a monitor and keyboard borrowed from the

Human Research Facility (HRF) presently on-board

ISS, to the PCS flight system computer to access and

modify possible corrupted PCS Basic Input/Output

System (BIOS) settings, but this recovery operation was

without success. In the week following the March 20th

recovery attempt, based on several logistics and risk

factors, GRC and the ISS program agreed to terminate
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anyfurtheron-orbitrecoveryactionsforthePCSflight
hardware.

Thehardwarehasbeenbroughtdownfor
failureanalysis,andit isbeingfixedandisreadyforthe
nextplannedactivitywiththePCS+experimentsby
Profs.PaulChaikin,andWilliamRusselof Princeton
University.Despiteflaevarioussuccessesdescribed
earlier,with each and every sample type investigated,

early termination of PCS resulted in some significant

missed opportunities:

The measurements of the growth of the AB6

sample at early times are obscured by scattering from

the liquid, and the data we have were not obtained at the

optimum time intervals during the growth process;

further experiments are needed to investigate this more

closely. This would provide critical insight into the

nature of the nucleation and growth process of the

crystals, one of the key aspects of the formation of these

structures. Similarly, it is essential to repeat the

measurements of the early stages of the AB13 crystals to

confirm the unexpected power laws observed.

With the col-pol gel samples, further

experiments to extend the range of frequencies over
which the elastic modulus was measured are desirable.

Rheology measurements as a function of time after the

gelation and during the period of aging will provide

valuable insights into the mechanisms leading to

structural changes. These would provide important

additional insight into the nature of the gel. With the

col-pol crystal sample, further experiments are desirable

to confirm the important observation of the order of the

phase separation and crystallization. With the col-pol

critical sample, we would like to repeat the test for

confirming certain aspects of the set of data we

obtained, and also obtain a second _movie" of the

spectacular spinodal decomposition behavior in these

samples in microgravity.

With the fractal samples, we would like to

probe the aging of the silica gel, and compare the results

to that of polystyrene gels; this was one of the main

motivations of the experiment. The aging of a gel made

from a hard material, silica, could be dramatically

different from that of a soft sample, polystyrene. This

conjecture could not be tested.

Thus, flae PCS hardware remains very valuable

for these and other such samples in future. While the

ISS provides _long durations' of _low-gravity'

environment, the PCS hardware/facility provides

enormous capabilities to study the bulk properties of the

colloidal dispersions. This is truly an advanced

diagnostic _facility' that is conducive for a very large

class of fluids, condensed matter physics, and biological
research work.

Summarsi

Physics of Colloids in Space (PCS), the first

fluids physics experiment that was carried out onboard

the ISS has given us tremendous amount of fresh

scientific data and knowledge. Four classes of colloids

were examined in these experiments, forming binary

crystals, col-pol gels and crystals, fractal gels, and

glasses. Settling of the particles and aggregates in lg

affects these experiments in various ways; the long

durations of microgravity available in the ISS helped

unmask these unique data by avoiding such settling, and

by extending the experimentation time, thereby

allowing us to choose the various samples and study the

various growth and coarsening characteristics

associated with them.
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